Hypersonic Propulsion System Simulation Development

Hypersonic Combined Cycle Engine (CCE) Mode Transition Fundamental Aeronautics – Hypersonic Project

HiTECC Simulation

- **High Mach Transient Engine Cycle Code (HiTECC)**
- Simulation package initially developed by SPIRITECH Advanced Products, Inc.
- Developed under the Hypersonic Project, Guidance Navigation and Control (GN&C) task.
 - Develop tools and procedures for experimental data analysis, control design and evaluation
 - HiTECC used to design and evaluate candidate mode transition/shock position control algorithms

HiTECC Objectives

- Demonstrate all modes of operation of a turbine based combined cycle (TBCC) propulsion system
 - Afterburner, turbine engine, dual mode scram jet
 - Simulate the mode transition sequence of events
- Designed to be generic and modular
 - Inlet geometry is described using the MathWorks® SimScapeTM
 - Can be used to convert CAD Drawing to Simulink® model file
 - Fast prototyping of inlet designs

High Mach Transient Engine Cycle Code (HiTECC)

- •Simulates fuel flow, fluid energy, and thermal energy transfer for both the LSFP and HSFP
- •Couples a transient flow model and a transient thermal model
- •One-dimensional compressible flow solver allows a variety of fuels, including hydrogen, to be modeled

- •Simulates the kinematic features of the variable inlet and nozzle for both flow paths
- •Models the dynamic response of the hydraulic fluid
- •Models for the power storage and generation for pumping the hydraulic fluid

- Turbo Jet Engine Model
- Dual Mode Scramjet Model Combustor **Propulsion Models**

Assume Started Low-Speed and **High-Speed Inlets** (No external normal shocks)

- Variable Inlet Model (P,T,W)
 - **External Compression**
 - Inviscid thermally perfect oblique shock theory
 - Supersonic Internal
 - Thermally perfect 1-dimensional steady-state compressible flow
 - Subsonic Internal
 - Unsteady subsonic compression model (control volume)
- Gas Turbine Model
 - Simple 0-dimensional engine model
- **Dual Mode Scramjet**
 - **Isolator**
 - Quasi 1-dimensional compressible flow equations
 - Combustor
 - Quasi 1-dimensional combustor model
- Nozzles
 - A simplified, 1-dimensional nozzle model

High Mach Transient Engine Cycle Code (HiTECC)

Mode Transition with HiTECC

- Mode transition occurs Mach 3.0 -4.0
- Mode transition sequence of events
 - Reach mode transition flight condition (M3.75)
 - Begin afterburner shutdown
 - Start DMSJ
 - Transition power
 - Close off LSFP/ shutdown turbine engine
 - Continue with mission

Mode Transition with HiTECC

Mode Transition with HiTECC

Large-scale Inlet model for Combined Cycle **Engine Mode Transition Studies (CCE-LIMX)**

Tunnel Floor

Redesign Geometry, Actuators, and Control **Systems**

Replacement of Turbine Engines with a Plug

Addition of the Cold Pipe Volume

Dynamic Response with Additional Volume

Mode Transition with the CCE-LIMX

- Pressure ratio setpoint is dependent on the splitter angle
- System is driven to starting pressure ratio by the plug

Future Work with HiTECC

- Develop linear models for diffuser (subsonic).
- Compare experimental data with HiTECC.
- Use HiTECC to develop and test candidate mode transition control algorithms before implementation.